Discovering inappropriate billings with local density based outlier detection method
نویسندگان
چکیده
This paper presents an application of a local density based outlier detection method in compliance in the context of public health service management. Public health systems have consumed a significant portion of many governments’ expenditure. Thus, it is important to ensure the money is spent appropriately. In this research, we studied the potentials of applying an outlier detection method to medical specialist groups to discover inappropriate billings. The results were validated by specialist compliance history and direct domain expert evaluation. It shows that the local density based outlier detection method significantly outperforms basic benchmarking method and is at least comparable, in term of performance, to a domain knowledge based method. The results suggest that the density based outlier detection method is an effective method of identifying inappropriate billing patterns and therefore is a valuable tool in monitoring medical practitioner billing compliance in the provision of health services.
منابع مشابه
Outlier-based Health Insurance Fraud Detection for U.S. Medicaid Data
Fraud, waste, and abuse in the U.S. healthcare system are estimated at $700 billion annually. Predictive analytics offers government and private payers the opportunity to identify and prevent or recover such billings. This paper proposes a data-driven method for fraud detection based on comparative research, fraud cases, and literature review. Unsupervised data mining techniques such as outlier...
متن کاملGeneralized Outlier Detection with Flexible Kernel Density Estimates
We analyse the interplay of density estimation and outlier detection in density-based outlier detection. By clear and principled decoupling of both steps, we formulate a generalization of density-based outlier detection methods based on kernel density estimation. Embedded in a broader framework for outlier detection, the resulting method can be easily adapted to detect novel types of outliers: ...
متن کاملKnowledge and Information Systems REGULAR PAPER
Outlier detection is concerned with discovering exceptional behaviors of objects. Its theoretical principle and practical implementation lay a foundation for some important applications such as credit card fraud detection, discovering criminal behaviors in e-commerce, discovering computer intrusion, etc. In this paper, we first present a unified model for several existing outlier detection sche...
متن کاملPerformance Evaluation of Density-Based Outlier Detection on High Dimensional Data
Outlier detection is a task that finds objects that are considerably dissimilar, exceptional or inconsistent with respect to the remaining data. Outlier detection has wide applications which include data analysis, financial fraud detection, network intrusion detection and clinical diagnosis of diseases. In data analysis applications, outliers are often considered as error or noise and are remov...
متن کاملA Local Density-Based Approach for Local Outlier Detection
This paper presents a simple but effective density-based outlier detection approach with the local kernel density estimation (KDE). A Relative Densitybased Outlier Score (RDOS) is introduced to measure the local outlierness of objects, in which the density distribution at the location of an object is estimated with a local KDE method based on extended nearest neighbors of the object. Instead of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009